

European Technical Assessment

ETA 25/0823 of 01/09/2025

Technical Assessment Body issuing the ETA: Technical and Test Institute

for Construction Prague

Trade name of the construction product rbs P400C+

Product family to which the construction

product belongs

Product area code: 33

Bonded injection type anchor for use in

cracked and uncracked concrete

Manufacturer Resapol Ltd

Unit D4, Walter Leigh Way, Moss Industrial Estate, Leigh,

Lancashire, WN7 3PT

England

Manufacturing plant Resapol Ltd Plant A

This European Technical Assessment

contains

26 pages including 23 Annexes which form

an integral part of this assessment.

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

EAD 330499-02-0601

Bonded fasteners for use in concrete

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The rbs P400C+ with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rods or rebars.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years and 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 to C 7
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 8 to C 10
Displacements under short-term and long-term loading	See Annex C 11
Characteristic resistance for seismic performance categories C2	See Annex C 12

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Satisfy the requirements for performance class A1
Resistance to fire	See Annex C 13, C 14

3.3 Hygiene, health and environment (BWR 3)

No performance determined.

3.4 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for	For fixing and/or supporting to concrete,		
use in concrete	structural elements (which contributes to	-	1
	the stability of the works) or heavy units		

Official Journal of the European Communities L 254 of 08.10.1996

-

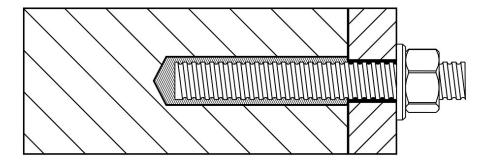
5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

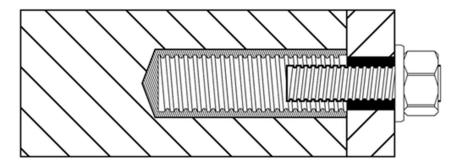
Issued in Prague on 01.09.2025

Ву

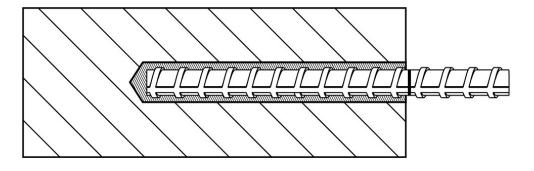
Ing. Jiří Studnička, Ph.D. Head of the Technical Assessment Body


Czech Republic

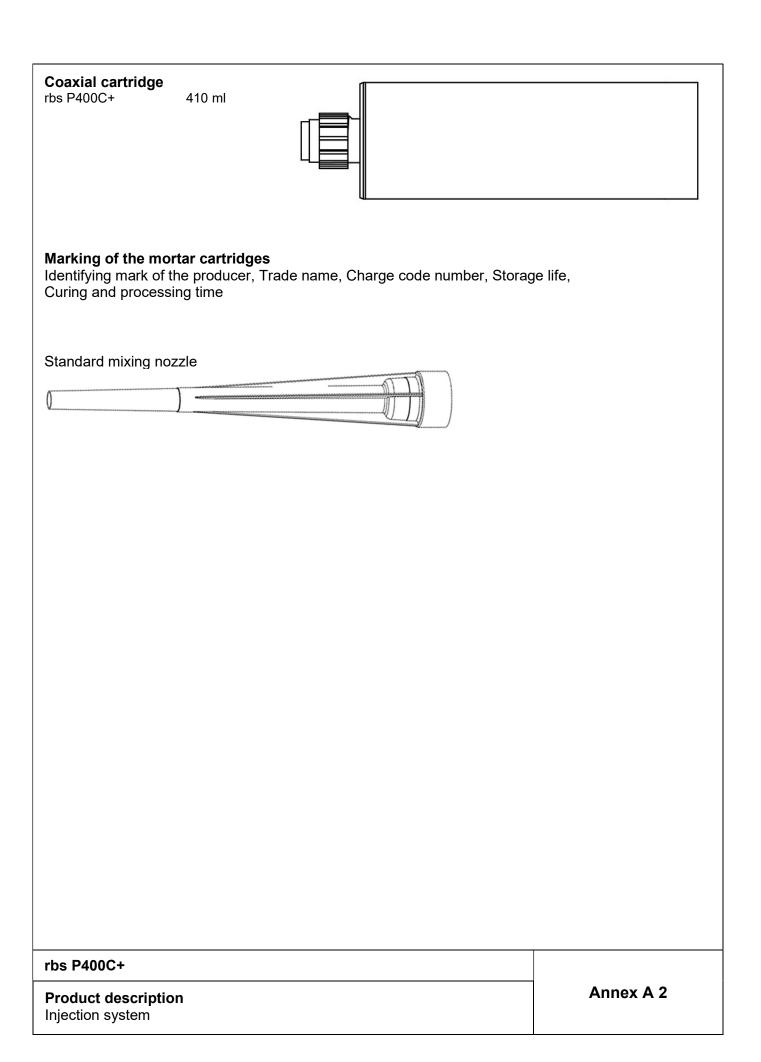
Page 3 of 26 ETA 25/0823 issued on 01/09/2025

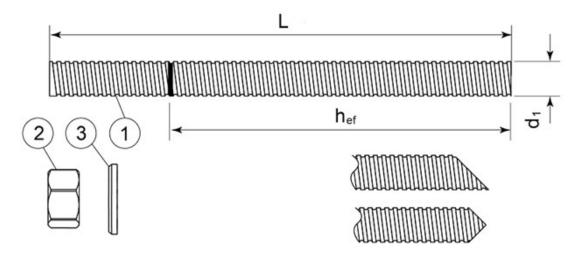

-

The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.


Threaded rod

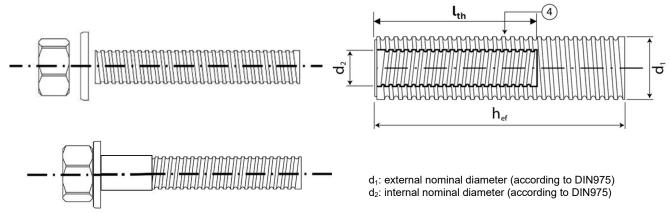
Threaded socket


Reinforcing bar


rbs P400C+

Product description
Installed conditions

Annex A 1



Standard commercial threaded rod with marked embedment depth.

Threaded socket M6, M8, M10, M12, M16

Standard commercial threaded socket.

rbs P400C+	
Product description	Annex A 3
Threaded rod	
Threaded socket	

Part	Designation	Material						
	Steel, zinc plated ≥ 5 μm acc. to EN ISO 4042 or							
Steel, Hot-dip galvanized ≥ 40 µm acc. to EN ISO 1461 and EN ISO 10684 or								
Steel, zinc diffusion coating ≥ 15 µm acc. to EN 13811								
1	Anchor rod	Steel, EN 10087 or EN 10263 Property class 4.6, 4.8, 5.6, 5.8, 8.8, 10.9* EN ISO 898-1						
2	Hexagon nut EN ISO 4032	According to threaded rod, EN 20898-2						
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod						
4	Threaded socket	Steel, EN 10087 or EN 10263 Property class 4.6, 4.8, 5.6, 5.8, 8.8, 10.9* EN ISO 898-1						
Stainl	ess steel							
1	Anchor rod	Material: A2-70, A4-70, A4-80, EN ISO 3506						
2	Hexagon nut EN ISO 4032	According to threaded rod						
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod						
4	Threaded socket	Material: A2-70, A4-70, A4-80, EN ISO 3506						
High	corrosion resistant steel							
1	Anchor rod	Material: 1.4529, 1.4565, EN 10088-1						
2	Hexagon nut EN ISO 4032	According to threaded rod						
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod						
4	Threaded socket	Material: 1.4529, 1.4565, EN 10088-1						

^{*}Galvanized rod of high strength are sensitive to hydrogen induced brittle failure

rbs P400C+	
Product description Materials	Annex A 4

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25

Standard commercial reinforcing bar with marked embedment depth

roduct form Bars and de-coiled r			-coiled rods	
Class		В	С	
Characteristic yield strength fyk or fo	_{0,2k} (MPa)	400 t	o 600	
Minimum value of $k = (f_t/f_y)_k$	≥ 1,08 ≥ 1,15 < 1,35			
Characteristic strain at maximum for	Characteristic strain at maximum force ε _{uk} (%)			
Bendability		Bend/Rebend test		
Maximum deviation from nominal				
mass (individual bar) (%)	Maximum deviation from nominal Nominal bar size (mm) mass (individual bar) (%) ≤ 8			
	> 8	±4	, ,5	
Bond: Minimum relative rib area,	Nominal bar size (mm)			
$f_{R,min}$	8 to 12	0,040		
	0,0)56		

rbs P400C+	
Product description Rebars and materials	Annex A 5

Specifications of intended use

Anchorages subject to:

- Static and quasi-static load:
 - threaded rod
 - threaded socket
 - rebar
- Fire exposure
- Seismic actions category C2: threaded rod size M12, M16

Base materials

- Cracked and uncracked concrete
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206:2013 + A2:2021.

Temperature range:

• -40°C to +80°C (max. short. term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- Structures subject to dry, internal conditions (all materials)
- For all other conditions according to EN 1993-1-4 corresponding to corrosion resistance class:
 - Stainless steel A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Concrete conditions:

- I1 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- 12 installation in water-filled (not sea water) and use in service in dry or wet concrete

Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4.
- For applications with resistance to fire exposure, the fasteners are designed in accordance with EOTA TR 082 "Design of bonded fasteners in concrete under fire conditions"

Installation:

- Hole drilling by hammer drilling, dustless drilling or diamond core drilling mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Installation direction:

• D3 – downward and horizontal and upwards (e.g. overhead) installation

rbs P400C+	
Intended use Specifications	Annex B 1

HDB - Hollow Drill Bit System Heller Duster Expert hollow drill bit SDS-Plus ≤ 16mm SDS-Max ≥ 16mm Class M vacuum Minimum flow rate 266 m³/h (74 l/s) **Cleaning brush** Applicator gun

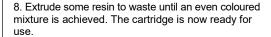
rbs P400C+	
Intended use Hollow drill bit system, Cleaning brush Applicator guns	Annex B 2

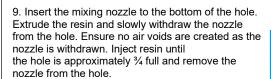
SOLID SUBSTRATE INSTALLATION METHOD

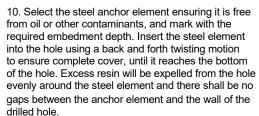
 Using the SDS hammer drill (HD) in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.

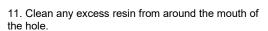
2. Select the correct air lance, insert to the bottom of the hole, and depress the trigger for 2 seconds. The compressed air must be clean and free from water and oil, with a minimum pressure of 90 psi (6 bar). A manual pump may be used for certain diameters and depths; check the approval document. Perform the blowing operation twice.

3. Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.



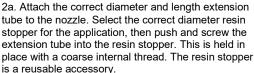

4. Repeat step 2 (blowing operation x2)


5. Repeat step 3 (brushing operation x2)


6. Repeat step 2 (blowing operation x2)

7. Select the most appropriate static mixer nozzle, checking that the mixing elements are present and fit for purpose. Never modify the mixer. Attach the mixer nozzle to the cartridge. Check the dispensing tool is in good working order. Place the cartridge into the dispensing tool.

- 12. Refer to the working and loading times within the tables to determine the appropriate cure time.
- 13. Position the fixture and tighten the anchor to the appropriate installation torque. Do not over-torque the anchor, as this could adversely affect its performance.



DEEP EMBEDMENT & OVERHEAD INSTALLATION METHOD

1a. Perform steps 1-8 under "solid substrate installation method".

3a. Push the resin stopper and extension tube to the back of the drill hole.

4a. Ensure the extension tube is angled to allow free movement of the resin stopper as the resin is extruded.

5a. Continue from step 10 under "solid substrate installation method".

DIAMOND CORE DRILLING

1b. Using a diamond core drill (DD) and following the manufacturer's instructions, drill the specified diameter hole to the correct embedment depth then remove the concrete core.

2b. Starting from the back of the hole, flush with pressurised water a minimum of two times and until there is only clean water.

3b. Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.

- 4b. Repeat step 2b (flushing operation x2).
- 5b. Repeat step 3b (brushing operation x2).
- 6a. Using the correct air lance and starting from the back of the hole and withdrawing, perform a minimum of two blowing operations and ensure that the hole is clear of debris and excess water.

7a. Continue from step 7 under "solid substrate installation method".

DUSTLESS DRILLING

1c. Using the specified hollow drill bit (HDB) and vacuum system and following the manufacturer's instructions, drill the specified diameter hole to the correct embedment depth. Ensure that the minimum vacuum specifications are met and that the vacuum is turned on.

2c. The hole should be inspected to ensure the system has worked correctly. If the hole is clear of dust and debris, no further cleaning is required.

3c. Continue from step 7 under "solid substrate installation method"

rbs P400C+

Intended use Installation procedure

Annex B 3

Table B1: Installation parameters of threaded rod

Size			M8	M10	M12	M16	M20	M24
Nominal drill hole diameter	Ød ₀	[mm]	10	12	14	18	22	26
Diameter of cleaning brush	d _b	[mm]	14	14	20	20	29	29
Manual pump cleaning					h _{ef} < 3	300 mm		
Torque moment	max T _{fix}	[Nm]	10 20 40 80 120 16				160	
Depth of drill hole for hef,min	h _{ef}	[mm]	60	60	70	80	90	96
Depth of drill hole for hef,max	h _{ef}	[mm]	160	200	240	320	400	480
Depth of drill hole	h_0	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5
Minimum edge distance	C _{min}	[mm]	40	40	50	70	80	100
Minimum spacing	Smin	[mm]	40	40	50	70	80	100
Minimum thickness of member	h_{min}	[mm]	$h_{ef} + 30 \text{ mm} \ge 100 \text{ mm}$ $h_{ef} + 2d_0$)		

Table B2: Installation parameters of threaded socket

Size			M6	M8	M10	M12	M16
Nominal drill hole diameter	$ \emptyset d_0 $	[mm]	12	14	18	22	26
Cleaning brush			14	20	20	29	29
Nominal Internal diameter of socket	d_2	[mm]	M6	M8	M10	M12	M16
Nominal external diameter of socket	d ₁	[mm]	M10	M12	M16	M20	M24
Torque moment	max T _{fixt}	[Nm]	10	10	20	40	80
Embedment depth for h _{ef,min}	h _{ef}	[mm]	60	70	80	90	96
Embedment depth for hef,max	h _{ef}	[mm]	200	240	320	400	480
Threaded engagement length min/max	Ith	[mm]	8/20	8/20	10/25	12/30	16/40
Depth of drill hole	h_0	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5
Minimum edge distance	Cmin	[mm]	40	40	40	50	50
Minimum spacing	Smin	[mm]	40	40	40	50	50
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm		m h _{ef} + 2d ₀		

Table B3: Installation parameters of rebar

Table D3. Ilistaliation parameters of te	,DUI							
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Nominal drill hole diameter	Ød ₀	[mm]	12	14	16	20	25	32
Diameter of cleaning brush	d _b	[mm]	14	14	19	22	29	40
Manual pump cleaning			h _{ef} < 300 mm					
Depth of drill hole for hef,min	h _{ef}	[mm]	60	60	70	80	90	100
Depth of drill hole for hef,max	h _{ef}	[mm]	160	200	240	320	400	480
Depth of drill hole	h ₀	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5
Minimum edge distance	Cmin	[mm]	40	40	50	70	80	100
Minimum spacing	Smin	[mm]	40	40	50	70	80	100
Minimum thickness of member	h_{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀					١

Table B4. Minimum curing time

Resin cartridge temperature [°C] T Work [mins]		Base material Temperature [°C]	T Load [mins]
min +5	18	min +5	145
+5 to +10	10	+5 to +10	145
+10 to +20	6	+10 to +20	85
+20 to +25	5	+20 to +25	50
+25 to +30	4	+25 to +30	40
+30	4	+30	35

T Work is typical gel time at highest base material temperature in the range.

rbs P400C+	
Intended use	Annex B 4
Installation parameters	_
Curing time	

T Load is minimum set time required until load can be applied at the lowest temperature in the range.

Table C1: Design method EN 1992-4
Steel failure - Characteristic values of resistance to tension load of threaded rod

Steel failure - Characteristic resistance								
Size			M8	M10	M12	M16	M20	M24
Steel grade 4.6	$N_{Rk,s}$	[kN]	15	23	34	63	98	141
Partial safety factor	γMs	[-]			2,	00		
Steel grade 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141
Partial safety factor	γMs	[-]			1,	50		
Steel grade 5.6	$N_{Rk,s}$	[kN]	18	29	42	79	123	177
Partial safety factor	γMs	[-]			2,	00		
Steel grade 5.8	$N_{Rk,s}$	[kN]	18	29	42	79	123	177
Partial safety factor	γMs	[-]	1,50					
Steel grade 8.8	$N_{Rk,s}$	[kN]	29	46	67	126	196	282
Partial safety factor	γMs	[-]			1,	50		
Steel grade 10.9	$N_{Rk,s}$	[kN]	37	58	84	157	245	353
Partial safety factor	γMs	[-]			1,	40		
Stainless steel grade A2-70, A4-70	$N_{Rk,s}$	[kN]	26	41	59	110	172	247
Partial safety factor	γMs	[-]			1,	87		
Stainless steel grade A4-80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282
Partial safety factor	γMs	[-]	1,60					
High corrosion resistant steel grade 1.4529	$N_{Rk,s}$	[kN]	26	41	59	110	172	247
Partial safety factor	γMs	[-]			1,	50	•	•
High corrosion resistant steel grade 1.4565	$N_{Rk,s}$	[kN]	26	41	59	110	172	247
Partial safety factor	γMs	[-]			1,	87		

Table C2: Design method EN 1992-4 Steel failure - Characteristic values of resistance to tension load of threaded socket

Steel failure - Characteristic resistance							
Size			М6	M8	M10	M12	M16
Steel grade 4.6	$N_{Rk,s}$	[kN]	8	15	23	34	63
Partial safety factor	γMs	[-]			2,00		
Steel grade 4.8	$N_{Rk,s}$	[kN]	8	15	23	34	63
Partial safety factor	γMs	[-]			1,50		
Steel grade 5.6	$N_{Rk,s}$	[kN]	10	18	29	42	79
Partial safety factor	γMs	[-]			2,00		
Steel grade 5.8	$N_{Rk,s}$	[kN]	10	18	29	42	79
Partial safety factor	γMs	[-]			1,50		
Steel grade 8.8	$N_{Rk,s}$	[kN]	16	29	46	67	126
Partial safety factor	γMs	[-]			1,50		
Steel grade 10.9	$N_{Rk,s}$	[kN]	20	37	58	84	157
Partial safety factor	γMs	[-]			1,33		
Stainless steel grade A2-70, A4-70	$N_{Rk,s}$	[kN]	14	26	41	59	110
Partial safety factor	γMs	[-]			1,87		
Stainless steel grade A4-80	$N_{Rk,s}$	[kN]	16	29	46	67	126
Partial safety factor	γMs	[-]			1,60		
High corrosion resistant steel grade 1.4529	$N_{Rk,s}$	[kN]	14	26	41	59	110
Partial safety factor	γMs	[-]			1,50		-
High corrosion resistant steel grade 1.4565	$N_{Rk,s}$	[kN]	14	26	41	59	110
Partial safety factor	γMs	[-]			1,87		

Table C3: Design method EN 1992-4 Steel failure - Characteristic values of resistance to tension load of rebar

Steel failure - Characteristic resistance								
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Rebar BSt 500 S	$N_{Rk,s}$	[kN]	28	43	62	111	173	270
Partial safety factor	γMs	[-]			1,	,4		

rbs P400C+	
Performances Steel failure characteristic resistance	Annex C 1

Table C4: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

Hammer	drilling	Dustless	drilling
II IUIIIIII	armining,	Dusticss	MI IIIIII

Combined pullout and concrete cone failure in concrete C20/25									
Size				M8	M10	M12	M16	M20	M24
Characteristic bond resistance in	uncracke	d con	crete for	a workin	g life of 5	0 years a	nd 100 y	ears	
Dry, wet concrete and flooded hole	τ	Rk,ucr	[N/mm ²]	11,0	10,0	10,0	9,0	7,5	7,0
Installation safety factor									
Dry, wet concrete		γinst	[-]				,2		
Hammer drilling - flooded hole		γinst	[-]				,2		
Dustless drilling - flooded hole		γinst	[-]				,4		
Characteristic bond resistance in				vorking l	ife of 50 y	ears/			
Dry, wet concrete and flooded hole		τ _{Rk,cr}	[N/mm ²]	5,0	5,0	4,5	4,0	4,0	4,0
Characteristic bond resistance in	cracked c	oncr	ete for a v	vorking l	ife of 100	years			
Dry, wet concrete and flooded hole		τ _{Rk,cr}	[N/mm ²]	4,0	4,0	3,5	3,5	3,5	3,5
Installation safety factor									
Dry, wet concrete		γinst	[-]				,2		
Hammer drilling - flooded hole		γinst	[-]				,2		
Dustless drilling - flooded hole		γinst	[-]			1,	,4		
Factor for influence of sustained load	d t	ψ ⁰ sus	[-]			0 .	75		
for a working life 50 years		Ψ sus	[]						
	C25/30						04		
	C30/37						08		
Factor for concrete	C35/45	ψс	[-]	1,12					
	C40/50	T "	.,	1,15					
	C45/55						17		
	C50/60					1,	19		
Concrete cone failure									

Concrete cone failure		
Factor for concrete cone failure for uncracked concrete	e k _{ucr,N}	11
Factor for concrete cone failure for cracked concrete	$k_{cr,N}$	7,7
Edge distance c _{cr,N}	[mm]	1,5h _{ef}

Splitting failure								
Size			M8	M10	M12	M16	M20	M24
Edge distance	C _{cr,sp}	[mm]	2 • h _{ef}					
Spacing	Scr,sp	[mm]	·	•	2 • 0	Ccr,sp	•	·

rbs P400C+	
Performances	Annex C 2
Hammer drilling, Dustless drilling	
Characteristic resistance for tension loads - threaded rod	

Table C5: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded socket

Hammer drilling, Dustless drilling							
Combined pullout and concrete cor	ne failure in d	oncrete C					
Size			M6	M8	M10	M12	M16
Nominal external diameter of socket			M10	M12	M16	M20	M24
Characteristic bond resistance in u							ı
Dry, wet concrete and flooded hole	$ au_{Rk,ucr}$	[N/mm ²]	10,0	10,0	9,0	7,5	7,0
Installation safety factor							
Dry, wet concrete	γinst	[-]			1,2		
Hammer drilling - flooded hole	γinst	[-]			1,2		
Dustless drilling - flooded hole	γinst	[-]			1,4		
Characteristic bond resistance in ci	racked conci	ete for a v	vorking life	of 50 year	rs		
Dry, wet concrete and flooded hole	τRk,cr	[N/mm ²]	5,0	4,5	4,0	4,0	4,0
Characteristic bond resistance in ci	racked conci	ete for a v	vorking life	of 100 yea	ars		
Dry, wet concrete and flooded hole	τRk,cr	[N/mm ²]	4,0	3,5	3,5	3,5	3,5
Installation safety factor				·			•
Dry, wet concrete	γinst	[-]			1,2		
Hammer drilling - flooded hole	γinst	[-]			1,2		
Dustless drilling - flooded hole	γinst	[-]			1,4		
Factor for influence of sustained load	0				0.75		
for a working life 50 years	Ψ^0 sus	[-]			0,75		
C	25/30				1,04		
 	30/37				1,08		
Factor for concrete	35/45	r 1			1,12		
ractor for concrete C	40/50 Ψ _c	[-]			1,15		
C	45/55				1,17		
C	50/60				1,19		
Concrete cone failure							
Factor for concrete cone failure for uncra	acked concrete	e k _{ucr,N}			11		
Factor for concrete cone failure for crack	ced concrete	k _{cr,N}			7,7		
Edge distance	Ccr,N	[mm]			1,5h _{ef}		

Lago diotarios	OG1,14 [111111]			1,01161		
Splitting failure						
Size		M6	M8	M10	M12	M16
Edge distance	c _{cr,sp} [mm]			2 • h _{ef}		
Spacing	s _{cr,sp} [mm]			2 • Ccr,sp		

rbs P400C+	
Performances	Annex C 3
Hammer drilling, Dustless drilling	
Characteristic resistance for tension loads - threaded socket	

Table C6: Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

Hammer drilling, Dustless drilling

Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	
Characteristic bond resi	stance in uncra	cked co	ncrete for	a workin	g life of	50 years	and 100 y	ears		
Dry, wet concrete and floo		τ _{Rk,ucr}	[N/mm ²]	8,5	8,0	8,0	7,0	7,0	5,5	
Installation safety factor						•			l	
Dry, wet concrete		γinst	[-]			1	,2			
Hammer drilling - flooded	hole	γinst	[-]			1	,2			
Dustless drilling - flooded	hole	γinst	[-]			1	,4			
Characteristic bond resi	stance in crack	ed conc	rete for a v	working l	ife of 50	years				
Dry, wet concrete and floo	[N/mm ²]	4,0	3,5	3,5	3,5	3,5	2,5			
Characteristic bond resi	stance in crack	ed conc	rete for a v	working l	ife of 100) years				
Dry, wet concrete and floo	oded hole	$ au_{Rk,cr}$	[N/mm ²]	3,0	3,0	2,5	2,5	2,5	2,0	
Installation safety factor										
Dry, wet concrete		γinst	[-]	1,2						
Hammer drilling - flooded	hole	γinst	[-]	1,2						
Dustless drilling - flooded	hole	γinst	[-]			1	,4			
Factor for influence of sus for a working life 50 years		$\Psi^0_{ extsf{sus}}$	[-]			0,	75			
	C25/30 C30/37			1,04 1,08						
Factor for concrete C35/45 C40/50		Ψο	[-]			1,	1,12			
		Ψ¢	[-]	1,15						
	C45/55 C50/60						17 19			

Concrete cone failure			
Factor for concrete cone failure for uncracked concrete	k _{ucr,N}	r 1	11
Factor for concrete cone failure for cracked concrete	K _{cr,N}	[-]	7,7
Edge distance	C _{cr,N}	[mm]	1,5h _{ef}

Splitting failure								
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Edge distance	C _{cr,sp}	[mm]	2 • h _{ef}					
Spacing	S _{cr,sp}	[mm]	2 • C _{cr,sp}					

rbs P400C+	
Performances	Annex C 4
Hammer drilling, Dustless drilling	
Characteristic resistance for tension loads - rebar	

Table C7: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

Diamond core drilling

Size				M8	M10	M12	M16	M20	M24	
Characteristic bond resistand	e in uncrack	ed cor	crete for	a workin	g life of 5	0 years a	nd 100 y	ears		
Dry, wet concrete and flooded h	ole	τ _{Rk,ucr}	[N/mm ²]	9,5	9,0	9,0	7,5	6,5	6,0	
Installation safety factor		-								
Dry, wet concrete		γinst	[-]				,0			
Flooded hole		γinst	[-]			1	,4			
Characteristic bond resistanc	e in cracked	concr	ete for a v	vorking l	ife of 50 y	/ears				
Dry, wet concrete and flooded h	ole	τ _{Rk,cr}	[N/mm ²]	5,5	5,5	5,5	4,5	5,0	5,0	
Characteristic bond resistanc	e in cracked	concr	ete for a v	vorking l	ife of 100	years				
Dry, wet concrete and flooded h	ole	τ _{Rk,cr}	[N/mm ²]	5,0	4,5	5,0	3,5	3,5	3,5	
Installation safety factor										
Dry, wet concrete		γinst	[-]				,0			
Flooded hole		γinst	[-]			1	,4			
Factor for influence of sustained	t	Ψ^0 sus	[-]			Λ	75			
load for a working life 50 years		Ψ sus	[-]							
	C25/30			1,02						
	C30/37						04			
Factor for concrete	C35/45	Ψc	[-]	1,06						
	C40/50	' '				,	07			
	C45/55						80			
	C50/60					I,	09			
Concrete cone failure										
Factor for concrete cone failure fo							1			
	or for concrete cone failure for cracked concrete k _{cr,N}				7,7					
Edge distance		Ccr,N	[mm]			1,5	h _{ef}			
Splitting failure										
Size				M8	M10	M12	M16	M20	M24	
Edge distance		C _{cr,sp}	[mm]		•	2 •	h _{ef}			
<u> </u>			: :							

Size						M20	M24
C _{cr,sp}	[mm]	2 • hef					
S cr,sp	[mm]	2 • Ccr,sp					
		· · · · ·	*	Ccr,sp [mm]	Ccr,sp [mm] 2 •	Ccr,sp [mm] 2 • hef	c _{cr,sp} [mm] 2 • h _{ef}

rbs P400C+	
Performances	Annex C 5
Diamond core drilling Characteristic resistance for tension loads - threaded rod	

Table C8: Design method EN 1992-4

Characteristic values of resistance to tension load of threaded socket

Diamond core drilling Combined pullout and concrete cone failure in concrete C20/25 **M8** M10 M12 M16 Nominal external diameter of socket M10 M12 M16 M20 M24 Characteristic bond resistance in uncracked concrete for a working life of 50 years and 100 years Dry, wet concrete and flooded hole τ_{Rk,ucr} [N/mm²] 9,0 9,0 7,5 6,5 6,0 Installation safety factor Dry, wet concrete 1,0 γ_{inst} Flooded hole [-] 1,4 γinst Characteristic bond resistance in cracked concrete for a working life of 50 years τ_{Rk,cr} [N/mm²] 4,5 Dry, wet concrete and flooded hole 5,5 5,0 5,0 Characteristic bond resistance in cracked concrete for a working life of 100 years $\tau_{Rk,cr}$ [N/mm²] 3,5 Dry, wet concrete and flooded hole 4,5 5,0 3,5 3,5 Installation safety factor 1,0 Dry, wet concrete γinst 1,4 Flooded hole [-] Factor for influence of sustained load ψ^0_{sus} 0,75 [-] for a working life 50 years C25/30 1,02 C30/37 1,04 C35/45 1,06 Factor for concrete ψс [-] C40/50 1,07 1,08 C45/55 C50/60 1,09 Concrete cone failure Factor for concrete cone failure for uncracked concrete 11 k_{ucr,N} Factor for concrete cone failure for cracked concrete $k_{\text{cr},N}$ 7,7 Edge distance [mm] 1,5h_{ef} Splitting failure Size

[mm]

[mm]

Ccr,sp

2 • hef

2 • Ccr,sp

rbs P400C+	
Performances	Annex C 6
Diamond core drilling	
Characteristic resistance for tension loads - threaded rod	

Edge distance

Spacing

Table C9: Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

Diamond core drilling

Combined pullout and o	concrete cone fa	ailure in	concrete C	20/25					
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Characteristic bond res	istance in uncra	acked co	ncrete for	a workin	g life of	50 years	and 100 y	/ears	
Dry, wet concrete and flo	oded hole	τRk,ucr	[N/mm ²]	8,0	8,0	7,5	7,5	6,5	5,5
Installation safety factor									
Dry, wet concrete		γinst	[-]			1	,0		
Flooded hole		γinst	[-]			1	,4		
Characteristic bond res	istance in uncra	acked co	ncrete for	a workin	ng life of	50 years			
Dry, wet concrete and flo	oded hole	$ au_{Rk,cr}$	[N/mm ²]	5,5	6,0	6,0	4,5	4,5	4,5
Characteristic bond res	istance in uncra	acked co	ncrete for	a workin	ng life of	100 years)		
Dry, wet concrete and flo	oded hole	τ _{Rk,cr}	[N/mm ²]	5,0	5,0	5,5	3,5	3,0	3,5
Installation safety factor									
Dry, wet concrete		γinst	[-]	1,0					
Flooded hole		γinst	[-]			1	,4		
Factor for influence of sur for a working life 50 years		ψ^0_{sus}	[-]			0,	87		
Factor for concrete	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	Ψο	[-]	1,02 1,04 1,06 1,07 1,08 1,09					

Concrete cone failure								
Factor for concrete cone failure for uncracked concrete	k _{ucr,N}	[-]	11					
Factor for concrete cone failure for cracked concrete	k cr,N	[-]	7,7					
Edge distance	C _{cr,N}	[mm]	1,5h _{ef}					

Splitting failure									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	
Edge distance	C _{cr,sp}	[mm]	2 • h _{ef}						
Spacing	S _{cr,sp}	[mm]	2 • Ccr,sp						

rbs P400C+	
Performances	Annex C 7
Diamond core drilling	
Characteristic resistance for tension loads - rebar	

Table C10: Design method EN 1992-4 Characteristic values of resistance to shear load of threaded rod

Size			M8	M10	M12	M16	M20	M24
Steel grade 4.6	$V_{Rk,s}$	[kN]	9	14	20	38	59	85
Partial safety factor	γMs	[-]			1,	67		
Steel grade 4.8	$V_{Rk,s}$	[kN]	9	14	20	38	59	85
Partial safety factor	γMs	[-]			1,	25		
Steel grade 5.6	$V_{Rk,s}$	[kN]	11	17	25	47	74	106
Partial safety factor	γMs	[-]			1,	67		
Steel grade 5.8	$V_{Rk,s}$	[kN]	11	17	25	47	74	106
Partial safety factor	γMs	[-]			1,	25		
Steel grade 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141
Partial safety factor	γMs	[-]	1,25					
Steel grade 10.9	$V_{Rk,s}$	[kN]	18	29	42	79	123	177
Partial safety factor	γMs	[-]			1	,5		
Stainless steel grade A2-70, A4-70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124
Partial safety factor	γMs	[-]			1,	56		
Stainless steel grade A4-80	$V_{Rk,s}$	[kN]	15	23	34	63	98	141
Partial safety factor	γMs	[-]			1,	33		
High corrosion resistant steel grade 1.4529	$V_{Rk,s}$	[kN]	13	20	30	55	86	124
Partial safety factor	γMs	[-]	1,25					
High corrosion resistant steel grade 1.4565	$V_{Rk,s}$	[kN]	13	20	30	55	86	124
Partial safety factor	γMs	[-]			1,	56		
Characteristic resistance of group of fasteners								
Ductility factor $k_7 = 1,0$ for steel with rupture e	longation	$A_5 > 8\%$	6					·

	or starred or group or raidteriore								
Ductility factor	k_7 = 1,0 for steel with rupture elongation $A_5 > 8\%$								
ISteel failure wi	Steel failure with lever arm								

Steel failure with lever arm								
Size			M8	M10	M12	M16	M20	M24
Steel grade 4.6	Mo _{Rk,s} [N.r	m]	15	30	52	133	260	449
Partial safety factor	γMs [-]				1,	67		
Steel grade 4.8	M ^o Rk,s [N.r	m]	15	30	52	133	260	449
Partial safety factor	γMs [-]				1,	25		
Steel grade 5.6	M ^o Rk,s [N.r	m]	19	37	66	166	325	561
Partial safety factor	γMs [-]				1,	67		
Steel grade 5.8	M ^o Rk,s [N.r	m]	19	37	66	166	325	561
Partial safety factor	γMs [-]				1,	25		
Steel grade 8.8	M ^o _{Rk,s} [N.r	m]	30	60	105	266	519	898
Partial safety factor	γ _{Ms} [-]				1,	25		
Steel grade 10.9	M ^o Rk,s [N.r	m]	37	75	131	333	649	1123
Partial safety factor	γMs [-]				1,	50		
Stainless steel grade A2-70, A4-70	M ^o Rk,s [N.r	m]	26	52	92	233	454	786
Partial safety factor	γMs [-]				1,	56		
Stainless steel grade A4-80	M ^o Rk,s [N.r	m]	30	60	105	266	519	898
Partial safety factor	γ _{Ms} [-]		1,33					
High corrosion resistant steel grade 1.4529	M ^o Rk,s [N.r	m]	26	52	92	233	454	786
Partial safety factor	γMs [-]				1,	25		
High corrosion resistant steel grade 1.4565	M ^o Rk,s [N.r	m]	26	52	92	233	454	786
Partial safety factor	γMs [-]				1,	56		
Concrete pryout failure								
Factor for resistance to pry-out failure	k ₈ [-]	1 1				2		·

Concrete edge failure							
Size		M8	M10	M12	M16	M20	M24
Outside diameter of fastener	d _{nom} [mm]	8	10	12	16	20	24
Effective length of fastener	ℓ _f [mm]	min (h _{ef} , 8 d _{nom})					

rbs P400C+	
Performances	Annex C 8
Design according to EN 1992-4	
Characteristic resistance for shear loads - threaded rod	

Table C11: Design method EN 1992-4 Characteristic values of resistance to shear load of threaded socket

		M6	M8	M10	M12	M16
		M10	M12	M16	M20	M24
$V_{Rk,s}$	[kN]	5	9	14	20	38
γMs			•	1,67		
$V_{Rk,s}$	[kN]	5	9	14	20	38
				1,25		
$V_{Rk,s}$	[kN]	6	11	17	25	47
				1,67		
$V_{Rk,s}$	[kN]	6	11	17	25	47
γMs	[-]			1,25		
$V_{Rk,s}$	[kN]	8	15	23	34	63
γMs	[-]			1,25		
$V_{Rk,s}$	[kN]	10	18	29	42	79
γMs	[-]			1,5		
$V_{Rk,s}$	[kN]	7	13	20	30	55
γMs	[-]			1,56		
$V_{Rk,s}$	[kN]	8	15	23	34	63
γMs	[-]			1,33		
$V_{Rk,s}$	[kN]	7	13	20	30	55
γMs	[-]			1,25		
$V_{Rk,s}$	[kN]	7	13	20	30	55
γ _{Ms}	[-]			1,56		
	YMs VRk,s YMs	Умs [-] VRk,s [kN] Умs [-] VRk,s [kN]	γMs [-] V _{Rk,s} [kN] 5 γ _{Ms} [-] 5 γ _{Ms} [-] 6 γ _{Ms} [-] 6 γ _{Ms} [-] 6 γ _{Ms} [-] 10 γ _{Ms} [-] 10 γ _{Ms} [-] 7 γ _{Ms} [-] 7 γ _{Ms} [-] 10 γ _{Ms} [-] 10 </td <td>γMs [-] V_{Rk,s} [kN] 5 9 γ_{Ms} [-] - V_{Rk,s} [kN] 6 11 γ_{Ms} [-] - V_{Rk,s} [kN] 8 15 γ_{Ms} [-] - V_{Rk,s} [kN] 10 18 γ_{Ms} [-] - V_{Rk,s} [kN] 7 13 γ_{Ms} [-] - V_{Rk,s} [kN] 7 13 γ_{Ms} [-] - - V_{Rk,s} [kN] 7 13 γ_{Ms} [-] - - V_{Rk,s} [kN] 7 13 γ_{Ms} [-] - -</td> <td>γMs [-] 1,67 V_{Rk,s} [kN] 5 9 14 γ_{Ms} [-] 1,25 V_{Rk,s} [kN] 6 11 17 γ_{Ms} [-] 1,67 V_{Rk,s} [kN] 6 11 17 γ_{Ms} [-] 1,25 V_{Rk,s} [kN] 8 15 23 γ_{Ms} [-] 1,25 V_{Rk,s} [kN] 10 18 29 γ_{Ms} [-] 1,5 V_{Rk,s} [kN] 7 13 20 γ_{Ms} [-] 1,33 V_{Rk,s} [kN] 7 13 20 γ_{Ms} [-] 1,25 V_{Rk,s} [kN] 7 13 20 γ_{Ms} [-] 1,25 V_{Rk,s} [kN] 7 13 20 γ_{Ms} [-] 1,56</td> <td>γ_{Ms} [-] 1,67 V_{Rk,s} [kN] 5 9 14 20 γ_{Ms} [-] 1,25 1,25 V_{Rk,s} [kN] 6 11 17 25 γ_{Ms} [-] 1,67 1,67 V_{Rk,s} [kN] 6 11 17 25 γ_{Ms} [-] 1,25 1,25 V_{Rk,s} [kN] 8 15 23 34 γ_{Ms} [-] 1,25 1,55 V_{Rk,s} [kN] 7 13 20 30 γ_{Ms} [-] 1,56 V_{Rk,s} [kN] 7 13 20 30 γ_{Ms} [-] 1,33 1,25 V_{Rk,s} [kN] 7 13 20 30 γ_{Ms} [-] 1,25 1,25 V_{Rk,s} [kN] 7 13 20 30 γ_{Ms} [-] 1,25 1,25 V_{Rk,s} [kN] 7 13 20 30 γ_{Ms} [-] 1,56 1,56 1,56</td>	γMs [-] V _{Rk,s} [kN] 5 9 γ _{Ms} [-] - V _{Rk,s} [kN] 6 11 γ _{Ms} [-] - V _{Rk,s} [kN] 8 15 γ _{Ms} [-] - V _{Rk,s} [kN] 10 18 γ _{Ms} [-] - V _{Rk,s} [kN] 7 13 γ _{Ms} [-] - V _{Rk,s} [kN] 7 13 γ _{Ms} [-] - - V _{Rk,s} [kN] 7 13 γ _{Ms} [-] - - V _{Rk,s} [kN] 7 13 γ _{Ms} [-] - -	γMs [-] 1,67 V _{Rk,s} [kN] 5 9 14 γ _{Ms} [-] 1,25 V _{Rk,s} [kN] 6 11 17 γ _{Ms} [-] 1,67 V _{Rk,s} [kN] 6 11 17 γ _{Ms} [-] 1,25 V _{Rk,s} [kN] 8 15 23 γ _{Ms} [-] 1,25 V _{Rk,s} [kN] 10 18 29 γ _{Ms} [-] 1,5 V _{Rk,s} [kN] 7 13 20 γ _{Ms} [-] 1,33 V _{Rk,s} [kN] 7 13 20 γ _{Ms} [-] 1,25 V _{Rk,s} [kN] 7 13 20 γ _{Ms} [-] 1,25 V _{Rk,s} [kN] 7 13 20 γ _{Ms} [-] 1,56	γ _{Ms} [-] 1,67 V _{Rk,s} [kN] 5 9 14 20 γ _{Ms} [-] 1,25 1,25 V _{Rk,s} [kN] 6 11 17 25 γ _{Ms} [-] 1,67 1,67 V _{Rk,s} [kN] 6 11 17 25 γ _{Ms} [-] 1,25 1,25 V _{Rk,s} [kN] 8 15 23 34 γ _{Ms} [-] 1,25 1,55 V _{Rk,s} [kN] 7 13 20 30 γ _{Ms} [-] 1,56 V _{Rk,s} [kN] 7 13 20 30 γ _{Ms} [-] 1,33 1,25 V _{Rk,s} [kN] 7 13 20 30 γ _{Ms} [-] 1,25 1,25 V _{Rk,s} [kN] 7 13 20 30 γ _{Ms} [-] 1,25 1,25 V _{Rk,s} [kN] 7 13 20 30 γ _{Ms} [-] 1,56 1,56 1,56

Steel failure with lever arm						
Size		M6	M8	M10	M12	M16
Nominal external diameter of socket		M10	M12	M16	M20	M24
Steel grade 4.6	Mº _{Rk,s} [N.m]	6	15	30	52	133
Partial safety factor	γ _{Ms} [-]			1,67		
Steel grade 4.8	M° _{Rk,s} [N.m]	6	15	30	52	133
Partial safety factor	γ _{Ms} [-]			1,25		
Steel grade 5.6	M° _{Rk,s} [N.m]	8	19	37	66	166
Partial safety factor	γ _{Ms} [-]			1,67		
Steel grade 5.8	M° _{Rk,s} [N.m]	8	19	37	66	166
Partial safety factor	γ _{Ms} [-]			1,25		
Steel grade 8.8	M° _{Rk,s} [N.m]	12	30	60	105	266
Partial safety factor	γ _{Ms} [-]			1,25		
Steel grade 10.9	M° _{Rk,s} [N.m]	15	37	75	131	333
Partial safety factor	γ _{Ms} [-]			1,50		
Stainless steel grade A2-70, A4-70	M° _{Rk,s} [N.m]	11	26	52	92	233
Partial safety factor	γ _{Ms} [-]			1,56		
Stainless steel grade A4-80	M ^o _{Rk,s} [N.m]	12	30	60	105	266
Partial safety factor	γ _{Ms} [-]			1,33		
High corrosion resistant steel grade 1.4529	M° _{Rk,s} [N.m]	11	26	52	92	233
Partial safety factor	γ _{Ms} [-]			1,25		
High corrosion resistant steel grade 1.4565	M° _{Rk,s} [N.m]	11	26	52	92	233
Partial safety factor	γ _{Ms} [-]			1,56	•	
Concrete pryout failure						
Factor for resistance to pry-out failure	k。 [-]			2		

Concrete edge failure								
Size			M6	M8	M10	M12	M16	
Nominal external diameter of socket			M10	M12	M16	M20	M24	
Outside diameter of fastener	d_{nom}	[mm]	10	12	16	20	24	
Effective length of fastener	l f	[mm]	min (h _{ef} , 8 d _{nom})					

rbs P400C+	
Performances	Annex C 9
Design according to EN 1992-4	
Characteristic resistance for shear loads - threaded socket	

Table C12: Design method EN 1992-4 Characteristic values of resistance to shear load of rebar

Steel failure without lever arm										
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25		
Rebar BSt 500 S	V_{R}	k,s [kN]	14	22	31	55	86	135		
Partial safety factor	γ	Ms [-]			1	,5				
Characteristic resistance of group of fasteners										
Ductility factor $k_7 = 1,0$ for steel with rupture elongation $A_5 > 8\%$										

Steel failure with lever arm							
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Rebar BSt 500 S	Mº _{Rk,s} [N.m]	33	65	112	265	518	1013
Partial safety factor	γMs [-]			1	,5		
Concrete pryout failure							
Factor for resistance to pry-out failure	k ₈ [-]			4	2		

Concrete edge failure							
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Outside diameter of fastener d _{nom}	[mm]	8	10	12	16	20	25
Effective length of fastener \$\ell_f\$	[mm]			min (hef	, 8 d _{nom})		

rbs P400C+	
Performances	Annex C 10
Design according to EN 1992-4	
Characteristic resistance for shear loads - rebar	

Table C13: Displacement of threaded rod under tension and shear load Hammer drilling, dustless drilling

		ammor	ariiiirig, v	<u> 44011000</u>	<u>arming</u>		
Size		M8	M10	M12	M16	M20	M24
Tensio	n load						
Uncrad	cked concre	ete					
δ_{N0}	[mm/kN]	0,030	0,024	0,026	0,026	0,022	0,023
δ _{N∞}	[mm/kN]	0,103	0,083	0,059	0,045	0,038	0,032
Cracke	ed concrete						
δ_{N0}	[mm/kN]	0,056	0,044	0,058	0,063	0,044	0,035
$\delta_{N^{\infty}}$	[mm/kN]	0,694	0,556	0,577	0,469	0,278	0,217
Shear	load						
δνο	[mm/kN]	0,021	0,016	0,013	0,010	0,008	0,007
δ∨∞	[mm/kN]	0,031	0,024	0,020	0,015	0,012	0,010

Table C14: Displacement of threaded rod under tension and shear load Diamond core drilling

		annona ,	ooro arm	<u>9</u>			
Size		M8	M10	M12	M16	M20	M24
Tensio	n load						
Uncrad	ked concre	ete					
δ_{N0}	[mm/kN]	0,035	0,032	0,024	0,026	0,023	0,024
δ _{N∞}	[mm/kN]	0,106	0,086	0,063	0,048	0,038	0,031
Cracke	ed concrete						
δνο	[mm/kN]	0,075	0,088	0,057	0,066	0,056	0,060
δ _{N∞}	[mm/kN]	0,629	0,547	0,348	0,287	0,200	0,159
Shear	load						
δνο	[mm/kN]	0,021	0,016	0,013	0,010	0,008	0,007
δν∞	[mm/kN]	0,031	0,024	0,020	0,015	0,012	0,010

Table C15: Displacement of rebar under tension and shear load Hammer drilling, dustless drilling

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Tensio	n load						
Uncrad	cked concre	ete					
δνο	[mm/kN]	0,037	0,033	0,036	0,031	0,025	0,023
δ _{N∞}	[mm/kN]	0,126	0,113	0,081	0,053	0,043	0,031
Cracke	ed concrete						
δνο	[mm/kN]	0,067	0,054	0,071	0,047	0,044	0,043
δn∞	[mm/kN]	0,820	0,630	0,660	0,372	0,272	0,266
Shear	load						
δνο	[mm/kN]	0,020	0,016	0,013	0,010	0,008	0,006
δν∞	[mm/kN]	0,030	0,025	0,019	0,015	0,012	0,008

Table C16: Displacement of rebar under tension and shear load Diamond core drilling

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Tensic	n load						
Uncrad	cked concre	ete					
δηο	[mm/kN]	0,045	0,037	0,044	0,039	0,037	0,041
δ _{N∞}	[mm/kN]	0,116	0,091	0,068	0,049	0,038	0,041
Cracke	ed concrete						
δ_{N0}	[mm/kN]	0,107	0,092	0,075	0,075	0,057	0,050
δ _{N∞}	[mm/kN]	0,609	0,459	0,343	0,287	0,204	0,144
Shear	load						
δ_{V0}	[mm/kN]	0,020	0,016	0,013	0,010	0,008	0,006
δγ∞	[mm/kN]	0,030	0,025	0,019	0,015	0,012	0,008

rbs P400C+	
Performances Displacement for threaded rod and rebar	Annex C 11

Table C17: Seismic performance category C2 - Hammer drilling, Dustless drilling

Size			M12	M16
Tension load				
Steel failure				
Se	ee Annex C 1			
Characteristic resistance to pull-out for	a working life	of 50 year	'S	
Dry, wet concrete and flooded hole	τRk,C2	[N/mm ²]	0,84	0,56
Characteristic resistance to pull-out for	a working li	fe of 100	years	
Dry, wet concrete and flooded hole	τRk,C2	[N/mm ²]	0,56	0,37
Installation safety factor				
Dry, wet concrete	γinst	[-]	1	,2
Hammer drilling - flooded hole	γinst	[-]	1	,2
Dustless drilling - flooded hole	γinst	[-]	1	,4

Shear load				
Steel failure without lever arm				
Characteristic resistance grade 4.6	V _{Rk,s,C2}	[kN]	13,6	27,3
Partial safety factor		[-]		67
Characteristic resistance grade 5.8	γMs	[kN]	17,0	34,1
Partial safety factor	V _{Rk,s,C2}			34,1 25
,	γMs	[-]	,	
Characteristic resistance grade 8.8	$V_{Rk,s,C2}$	[kN]	27,1	54,6
Partial safety factor	γMs	[-]	ı,	25
Characteristic resistance grade 10.9	V _{Rk,s,C2}	[kN]	Not gu	ualified
Partial safety factor	γMs	[-]	'	
Characteristic resistance A2-70, A4-70	$V_{Rk,s,C2}$	[kN]	23,8	47,8
Partial safety factor	γMs	[-]	1,	56
Characteristic resistance A4-80	$V_{Rk,s,C2}$	[kN]	27,1	54,6
Partial safety factor	γMs	[-]	1,	33
Characteristic resistance 1.4529	$V_{Rk,s,C2}$	[kN]	25,7	54,4
Partial safety factor	γMs	[-]	1,	25
Characteristic resistance 1.4565	$V_{Rk,s,C2}$	[kN]	25,7	54,4
Partial safety factor	γMs	[-]	1,	56
Characteristic shear load resistance V _{Rk,s,eq}	in the Table	e C8 shall	be multiplied l	by following
reduction factor for hot-dip gal				
Reduction factor for hot-dip galvanized rods	αv,h-dg,c2	[-]	0,46	0,61
Factor for annular gap	αgap	[-]	0	,5

Table C18: Displacement under tensile and shear load - seismic category C2

Size		M12	M16
δn,c2(50%)	[mm]	0,13	0,12
δn,C2(100%)	[mm]	0,24	0,17
δv,c2(50%)	[mm]	4,68	4,07
δv,C2(100%)	[mm]	8,02	6,76

The anchor shall be used with minimum rupture elongation after fracture $A_5 \ge 9\%$.

Note: Threaded sockets and rebars are not qualified for seismic design

rbs P400C+	
Performances	Annex C 12
Hammer drilling, Dustless drilling	
Seismic performance category C2	

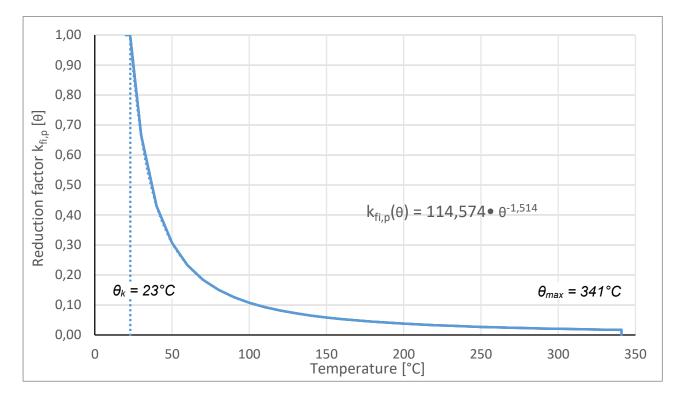
Characteristic resistance to combined pull-out and concrete failure $\tau_{Rk,fi}(\theta)$ under fire exposure for threaded rods for hammer or dustless drilling

The characteristic resistance to combined pull-out and concrete failure under fire $\tau_{Rk,fi,p}(\theta)$ shall be determined according to following equation:

$$\tau_{Rk,fi,p}(\theta) = k_{fi,p}(\theta) \cdot \tau_{Rk,cr}$$

where:

$$k_{fi,p}(\theta) = 1$$
 for $\theta < \theta_k$
 $k_{fi,p}(\theta) = 114,574 \cdot \theta^{-1,514} \le 1$ for $\theta \le \theta_{max}$
 $k_{fi,p}(\theta) = 0$ for $\theta > \theta_{max}$


 $\theta_k = 23^{\circ}C$ $\theta_{max} = 341^{\circ}C$

 $\tau_{Rk,fi,p}$ = characteristic bond resistance for cracked concrete under fire exposure tor given temperature (θ)

τ_{Rk,cr} = characteristic bond resistance for cracked concrete for concrete strength class C20/25

 $k_{fi,p}(\theta)$ = reduction factor for bond resistance under fire conditions

Figure C1: Reduction factor $k_{fi,p}(\theta)$

rbs P400C+	
Performances Bond resistance under fire conditions	Annex C 13

Table C19: Steel failure - Characteristic resistance under tension load under fire conditions for threaded rod

Size			M8	M10	M12	M16	M20	M24
	N _{Rk,s,fi(30)}	[kN]	0,37	0,87	1,69	3,14	4,90	7,06
Steel grade:	N _{Rk,s,fi(60)}	[kN]	0,33	0,75	1,26	2,36	3,68	5,30
4.6; 4.8; 5.6; 5.8; 8.8; 10.9	N _{Rk,s,fi(90)}	[kN]	0,26	0,58	1,10	2,04	3,19	4,59
	N _{Rk,s,fi(120)}	[kN]	0,18	0,46	0,84	1,57	2,45	3,53
Stainless steel grade:	N _{Rk,s,fi(30)}	[kN]	0,73	1,45	2,53	4,71	7,35	10,59
A2-70; A4-70; A4-80	N _{Rk,s,fi(60)}	[kN]	0,59	1,16	2,11	3,93	6,13	8,83
High corrosion resistant steel grade:	N _{Rk,s,fi(90)}	[kN]	0,44	0,93	1,69	3,14	4,90	7,06
1.4529; 1.4565	N _{Rk,s,fi(120)}	[kN]	0,37	0,81	1,35	2,51	3,92	5,65

Table C23: Steel failure - Characteristic resistance under tension load under fire conditions for rebar

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
	N _{Rk,s,fi(30)}	[kN]	0,50	1,18	2,26	4,02	6,28	9,82
Rebar BSt 500 S	N _{Rk,s,fi(60)}	[kN]	0,45	1,02	1,70	3,02	4,71	7,36
Rebai BSt 500 S	N _{Rk,s,fi(90)}	[kN]	0,35	0,79	1,47	2,61	4,08	6,38
	N _{Rk,s,fi(120)}	[kN]	0,25	0,63	1,13	2,01	3,14	4,91

Table C20: Steel failure - Characteristic resistance under shear load under fire conditions for threaded rod

Size			M8	M10	M12	M16	M20	M24
	V _{Rk,s,fi(30)}	[kN]	0,37	0,87	1,69	3,14	4,90	7,06
	V _{Rk,s,fi(60)}	[kN]	0,33	0,75	1,26	2,36	3,68	5,30
	V _{Rk,s,fi(90)}	[kN]	0,26	0,58	1,10	2,04	3,19	4,59
Steel grade:	V _{Rk,s,fi(120)}	[kN]	0,18	0,46	0,84	1,57	2,45	3,53
4.6; 4.8; 5.6; 5.8; 8.8; 10.9	M ^o Rk,s,fi(30)	[N.m]	0,4	1,1	2,6	6,7	13,0	22,5
	M ^o Rk,s,fi(60)	[N.m]	0,3	1,0	2,0	5,0	9,7	16,8
	M ^o Rk,s,fi(90)	[N.m]	0,3	0,7	1,7	4,3	8,4	14,6
	M ^o Rk,s,fi(120)	[N.m]	0,2	0,6	1,3	3,3	6,5	11,2
	$V_{Rk,s,fi(30)}$	[kN]	0,73	1,45	2,53	4,71	7,35	10,59
	V _{Rk,s,fi(60)}	[kN]	0,59	1,16	2,11	3,93	6,13	8,83
Stainless steel grade:	V _{Rk,s,fi(90)}	[kN]	0,44	0,93	1,69	3,14	4,90	7,06
A2-70; A4-70; A4-80	V _{Rk,s,fi(120)}	[kN]	0,37	0,81	1,35	2,51	3,92	5,65
High corrosion resistant steel grade:	M ^o Rk,s,fi(30)	[N.m]	0,7	1,9	3,9	10,0	19,5	33,7
1.4529; 1.4565	M ^o Rk,s,fi(60)	[N.m]	0,6	1,5	3,3	8,3	16,2	28,1
	M ^o Rk,s,fi(90)	[N.m]	0,4	1,2	2,6	6,7	13,0	22,5
	M ^o Rk,s,fi(120)	[N.m]	0,4	1,0	2,1	5,3	10,4	18,0

Table C21: Steel failure - Characteristic resistance under shear load under fire conditions for rebar

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
	V _{Rk,s,fi(30)}	[kN]	0,50	1,18	2,26	4,02	6,28	9,82
	V _{Rk,s,fi(60)}	[kN]	0,45	1,02	1,70	3,02	4,71	7,36
Rebar BSt 500 S	V _{Rk,s,fi(90)}	[kN]	0,35	0,79	1,47	2,61	4,08	6,38
	V _{Rk,s,fi(120)}	[kN]	0,25	0,63	1,13	2,01	3,14	4,91
	$M^{o}_{Rk,s,fi(30)}$	[N.m]	0,6	1,8	4,1	9,7	18,9	36,8
	M ^o Rk,s,fi(60)	[N.m]	0,5	1,5	3,1	7,2	14,1	27,6
	$M^{o}_{Rk,s,fi(90)}$	[N.m]	0,4	1,2	2,6	6,3	12,3	23,9
	M ^o Rk,s,fi(120)		0,3	0,9	2,0	4,8	9,4	18,4

rbs P400C+	
Performances Bond resistance under fire conditions	Annex C 14